
PartnerOS

Module 11 Design Project

Made by Group 2

Jelle Veldmaat (s2570238)
Andre Andringa (s2618184)
Cristian Zubcu (s2558440)
Maouheb Bessi (s2297205)
Marc Souvannasouck (s2554224)

Supervisor: Vadim Zaytsev

Table of Contents

Table of Contents..2
1 Introduction... 4

1.1 Definitions and terms... 4
2 Domain analysis...5

2.1 Domain introduction.. 5
2.2 Domain expert insights...5
2.3 Conclusion..6

3 Requirements... 7
3.1 Initial general requirements..7
3.2 Requirement selection.. 8

3.2.1 Functional requirements..8
3.2.2 Non-functional requirements...10

3.3 Requirement prioritization... 10
3.4 Conclusion..11

4 Technology and Tool research.. 11
4.1 User Interface... 12
4.2 Back-end...12

4.2.1 Database Design..12
4.2.2 Database Deployment and API Provision...12

4.3 Collaboration..13
4.3.1 Communication... 13
4.3.2 Task management.. 13
4.3.3 Planning and note-taking...13

4.4 Conclusion..14
5 Internal project management...15

5.1 Team Strategy...15
5.2 Team organization and roles...15

5.2.1 Front-end team.. 15
5.2.2 Back-end team...15

5.3 Risk management... 16
5.3.1 Risk management process... 16
5.3.2 Key risks and mitigation strategies... 16

5.4 Conclusion..17
6 System architecture... 18

6.1 Global design..18
6.1.1 Overview... 18
6.1.2 High-level System Architecture.. 18

6.1.3 Objectives..18
6.1.4 Key Components... 18

6.2 User interface design..19
6.2.1 Overview... 19
6.2.2 Design Principles and Objectives..19
6.2.3 Key Features and Functions.. 19

6.3 Backend Design..20
6.3.1 Overview... 20
6.3.2 Key Components... 20

6.4 Integration design...22
6.4.1 Overview... 22
6.4.2 Authentication and Authorization... 22
6.4.3 Data Mapping and Transformation... 22
6.4.4 Integration Templates and CSV Imports... 22
6.4.5 Monitoring and Maintenance.. 22

7 Development process...23
7.1 Key design decisions..23

7.1.1 Prototyping design decisions...23
7.1.2 Database design decisions...23
7.1.3 Front-end design decisions..24

7.2 Weekly activity...25
7.3 Conclusion..26

8 Testing...27
8.1 Testing plan.. 27
8.2 Testing results...27
8.3 Conclusion..28

9 The final product... 30
9.1 Final features.. 30
9.2 Excluded features... 31
9.3 Limitations... 31

10 Reflection on the process.. 32
10.1 Requirement negotiations...33
10.2 Backend scalability.. 33
10.3 Future improvements..33

11 Appendix.. 35
Appendix A.. 35
Appendix B.. 36
Appendix C.. 39
Appendix D.. 44
Appendix E...47

1 Introduction

The proposal of this project came from our
client Jisse, a partner manager in the
rapidly evolving SaaS (Software as a
Service) industry. Jisse identified
significant gaps in existing partner
management solutions, which often fail to
effectively support partner managers in
their daily tasks. Recognizing the need for
a comprehensive tool tailored to this
specific domain, Jisse proposed the
development of PartnerOS.

PartnerOS is a SaaS product engineered to
address the shortcomings of current
partner management systems by
incorporating advanced features such as
partner ROI measurement, efficient partner
recruitment, and comparisons to ideal
partner profiles. KPI extraction serves as
the cornerstone of PartnerOS, enabling
partner managers to monitor and evaluate
key performance metrics with ease.

Leveraging Jisse's expertise and insights
into the SaaS landscape, our team
collaborated closely with him to bring the
vision of PartnerOS to life. This innovative
platform promises to revolutionize partner
management, providing a seamless and
user-friendly solution for professionals in
the SaaS sector.

1.1 Definitions and terms

To guarantee a shared understanding of
various terms, we have compiled a list of
definitions. These will provide clarity on
the meanings of these words for the

subsequent report and throughout the
entire project.

Definitions:
Client - Jisse, domain expert, project
supplier (in the report the term Client and
the name Jisse are used interchangeably).

Customer - A company that is a customer
of our client.

Partner - A business partner of our
customer. This can be any type of partner
including but not limited to: sales partners,
integration partners, affiliate partners.

End-customer - A company that is a
customer of the partner and so, an indirect
customer of the clients customer.

Partner Manager - The direct end user of
our product, a person that manages a
certain amount of partners for a customer.
Employed by the customer. Using the
software from the client as a tool.

KPI - Key Performance Indicators, in our
case ideal partner profile comparison.

Journey - All steps in the relationship
between a customer and their partners.

Board - A specific part of a journey
represented by a kanban board. This board
represents a part of a phase for example:
recruitment, on-boarding, growing and
retainment .

Phase - A specific set of tasks part of a
board.

Task - A specific task that is part of a
phase.

2 Domain analysis

2.1 Domain introduction

SaaS partnerships refer to collaborations
between Software-as-a-Service (SaaS)
providers and other businesses or
organizations. SaaS is a cloud-based
software delivery model in which software
applications are hosted by a third-party
provider and made available to customers
over the internet.

SaaS partnerships can take many forms,
such as integration partnerships, reseller
partnerships, referral partnerships, and
co-marketing partnerships. These
partnerships are aimed at delivering more
value to customers by combining the
strengths of two or more SaaS providers.

SaaS partnerships are becoming
increasingly important in the tech industry
as businesses look to increase value to
their customers by offering extensive
solutions that are easy to use and integrate
with existing systems.

2.2 Domain expert insights

These insights are from Jisse, our client,
regarding the domain, other products
available on the market, and the gap that
PartnerOS should fill.

Most PRM’s / Partner Relationship
Management platforms in the market
started as tools to make channel sales
efficient and scalable, leading to
self-service partner portals for partners to

find all necessary resources and training to
be able to sell the vendor's solution. This
means that every vendor selling through
partnerships, is offering a partner portal
solution on their own.

One of the main indicators for a team
managing sales partnerships is partner
engagement data. If your partners are not
engaged with your company/product, then
it is really likely that they won’t mention
you in the next sales opportunity. Or even
worse, mentioning your competitor.

In the current SaaS landscape, a lot of
tools can be integrated with one another.
Meaning that it is now possible to capture
and combine activity data for every
interaction that a partner has with your
company. For example, if they send an
email to your support team, it’ll land in the
support tool. If they send an email to the
sales team, it will land in their CRM etc.
All of this activity data can be combined
via the API and used as input for a
partner's health score to measure the
relationship with your partner. This does
not exist within the current PRM tools and
will be implemented in PartnerOS in the
future.

Where PartnerOS currently differentiates
is measuring ROI. According to the
research of Jisse Plaggenborg in summer
2022, all partnership teams have trouble
with calculating ROI on partnership. In the
current ‘ecosystem’ approach there are
many different types of partners engaging
in partnerships with each other. Ranging

from integrations (SaaS software
connecting to other software), affiliates,
sales, services, system integrators,
software development partners and/or BI
dashboard development partners.

PartnerOS offers a solution where partners
move through the partner lifecycle,
managed by a partner manager while
actively collecting interaction data such as
time spent on meetings, tasks and calls.
Combining this with output data such as
the amount of leads generated and/or deals
won we can calculate the ROI for sales. In
the future, input data such as marketing
costs, wage of the partnership professional
per hour, upsells, renewals, churn
prevention metrics etc. can all be added to
the ROI overview.

For partnership teams this is crucial in
order to understand which partners they’ll
need to invest their time in, what the
output of their work is, and to get budget
allocations based on true ROI.

2.3 Conclusion

In closing, the SaaS partnership domain is
continuously evolving, with businesses
seeking to enhance the value they provide

to their customers through various
partnership types. The current PRM tools
available in the market focus on
facilitating partner engagement, but there
is a gap in the measurement of ROI for
partnerships. PartnerOS aims to fill this
gap by offering a solution that tracks and
calculates ROI throughout the partner
lifecycle, enabling partnership teams to
optimize their efforts and allocate
resources effectively. This approach will
contribute to the efficient management of
partnerships and help teams make
data-driven decisions for their
organizations.

3 Requirements

The foundation of any successful project
lies in the meticulous gathering and
analysis of its requirements. For
PartnerOS, we embarked on a
comprehensive process of collecting all
essential information by conducting
stakeholder interviews and thoroughly
examining existing systems and
documentation together with our client.
This commitment to understand the
problem directly from individuals working
in the domain is crucial. As it enables us to
construct a software product that is not
simply suitable for the needs of the target
user, but it’s a standing testament for our
promise of delivering a truly custom
tailored solution. In this chapter, we will
explore the insights obtained from the
requirement gathering process, which
serve as a blueprint for our final software
product.

3.1 Initial general requirements

To gather a general understanding on what
the intended use of PartnerOS would be,
we initially conducted stakeholder
interviews with our client Jisse. These
meetings helped define the main goal of
the platform, which is to manage, measure
and grow SaaS partner success (source 1).

Firstly, an efficient way of managing a
partner’s journey through the system had
to be implemented. Jisse suggested
adopting a kanban board style design. To
be precise, each partner phase, recruiting,
onboarding and retaining would be its own
board. Each partner in the system would

essentially represent a sticky note, which
can be placed around by the user anywhere
on the board. Based on the position of each
Partner on the board, a user could easily
tell in which stage the respective partner
is. By clicking each Partner, the user
would be able to access its tasks, therefore
allowing for easy task management.
Similar software such as HubSpot adopts
the same design, as it is more efficient than
other alternatives.

Secondly, a way to measure a partner’s
success needed to be crafted. To solve this
issue, PartnerOS would be required to
track two things: time spent in each phase
of the system and each partner's
characteristics, such as end-customer base,
ROI, etc. To solve the former issue, an
automatic time and working hours tracker
should be implemented. In this way, the
system would record each time a partner is
added/moved or deleted within the system.
Ideally, the time spent on each task should
be recorded as well. To address the latter
problem, the system should track a
partner's characteristics, and automatically
assign scores based on how close these
characteristics are to ideal values.

Lastly, to grow the success of each partner,
the system should allow partner managers
to view analytics on each partner, therefore
allowing them to make accurate business
decisions. Our client suggested
implementing a Give vs Get overview,
which would easily display how much the
customer gains or loses with each partner.

When talking about the system itself,
another crucial general requirement is that
the platform should be scalable and allow
for integration with other systems. This
would make it easy for customers that
already have a considerable partner base
and want to switch to a different system.

3.2 Requirement selection

After obtaining a general overview of what
PartnerOS should represent, we proceeded
to select and define specific requirements
for the system. This section presents the
chosen functional and non-functional
requirements, which together provide a
comprehensive picture of the desired
system capabilities.

3.2.1 Functional requirements
To begin with, we focused on defining the
functional requirements, which outline the
specific features and capabilities of
PartnerOS. Firstly, for the workflow
management three requirements were
constructed:

R1: The system should implement kanban
boards for each partner type and each
phase of the partner journey, allowing
users to manage and track the progress of
partners.

R2: The system should enable
customization of kanban boards to reflect
the unique needs and processes of different
partner types, ensuring that the boards are
relevant and applicable to each specific
partner.

R3: The system should allow users to add
phases and tasks to kanban boards,

providing a visual representation of the
partner journey and facilitating progress
tracking.

Next, three more requirements were added
to address task management for each
partner.

R4: The system should define standard
tasks for each phase of the partner
journey, ensuring a consistent approach
across different partners.

R5: The system should allow for
customization of tasks for individual
partners based on specific requirements,
enabling users to tailor the partner
journey to meet unique needs.

R6: The system should enable the addition
of extra tasks for a single partner or phase
as needed, providing flexibility in
managing the partner journey.

With the six requirements defined above, it
becomes more clear how the system will
handle the kanban-style workflow
mentioned in Section 3.1. Moreover, a
clever way of assigning tasks to a Partner
was found, based on their current journey
phase, while also allowing users to add
extra customized tasks. Next, three
requirement were added to define the
mechanism for time and effort tracking:

R7: The system should measure time and
working hours for each phase of the
partner journey, capturing start and end
times for each task to accurately track
efforts.

R8: The system should implement
standardized time estimates for common
tasks (e.g., meetings: 30 min, emails: 5

min), providing a consistent basis for time
tracking across tasks.

R9: The system should automatically
measure time spent on each task, ensuring
accurate tracking of efforts and enabling
users to monitor the progress of the
partner journey.

Requirements 7 through 9 describe the
system recording start and end times of
tasks, as well as having a list of
standardized times to easily track time of
activities. The system should also be able
to track the time of activities
automatically.

In order to show the analytics collected
from all of the tracked data on our
platform and allow users to make informed
business decisions, the system also
requires a way to manage the partners
themselves, as opposed to their journey or
their tasks. This includes having access to
partner pages where company
characteristics are shown, as well as
showing scores to quantify each partner.
For partner management we have three
requirements:

R10: The system should create partner
pages with company and contact
information, allowing for easy viewing,
editing, and storage of partner data.

R11: The system should track partner
statistics, such as time spent on each task
or project phase, and visualize this data on
the company page, providing insights into
partner performance.

R12: The system should monitor the
current phase of the partner journey and
display the partner's ideal profile score,

enabling users to assess and manage
partner progress effectively.

Our system would make use of “ideal
profiles”, which represent partner profiles
with maximized characteristics for the
clients gain, which are used as a
comparison to generate partner scores.
Therefore, for the ideal partner profiles
we added the following requirements:

R13: The system should allow users to
create custom profiles to compare
partners, taking into account the unique
characteristics and requirements of
different partner types, allowing for more
accurate assessments.

R14: The system should extract the ideal
partner profile based on the success of
previous partners, enabling users to
identify key attributes that contribute to
successful partnerships.

R15: The system should quantify partner
performance using a scoring system,
allowing for comparisons and evaluations
of partners to facilitate data-driven
decision-making.

Lastly, we have 2 additional requirements.
Specifically, the R16 addresses the issue of
scalability and R17 addresses the issue of
integration with another system,
HubSpot. These are the last 2 functional
requirements:

R16: The system should allow easy
onboarding of new customers by allowing
them to use the same database template
with the press of a button.

R17: The system should allow users to
import HubSpot accounts to PartnerOS,

ensuring seamless synchronization of
partner data.

In total, we have defined 17 functional
requirements that cover various aspects of
PartnerOS, from workflow management
and task assignment to performance
measurement and integration with external
systems.

3.2.2 Non-functional requirements
After defining the functional requirements,
we turned our attention to the
non-functional requirements. These
requirements are essential to ensuring a
positive user experience and meeting
performance expectations. We have
divided these non-functional requirements
into three categories: performance,
usability, and flexibility. For
performance:
R18: The system should ensure that the
infrastructure can handle an increasing
number of users and partners without
compromising performance.

R19: The system should provide a
dedicated analytics page to visualize time
and effort data, enabling data-driven
decision making.

For usability:
R20: The system should have an intuitive
and user-friendly interface for easy
navigation and efficient use of the
platform.

And lastly, for flexibility:
R21: The system should cater to the
specific needs of different partner types
and ensure a streamlined and efficient
process for all stakeholders involved.

By incorporating both functional and
non-functional requirements, we have
created a comprehensive framework for
the design and development of PartnerOS,
ensuring that the final product meets the
clients expectations and effectively
addresses the challenges associated with
partner management.

3.3 Requirement prioritization

Given that there are 21 requirements to be
considered, it is prudent to prioritize them
for effective project management.

To prioritize the identified requirements
for PartnerOS, we utilized the MoSCoW
method. In this approach, all requirements
are divided into four distinct categories.
The most crucial requirements are
classified as Must-haves, which are
essential for implementation. The next
category, Should-haves, consists of tasks
that are important for the final product but
not strictly necessary. Following that,
Could-haves are nice-to-have features that
do not impede the system's functionality if
left unimplemented. Lastly, the
Will-not-haves are requirements that are
not scheduled for implementation during
the current development phase. These may
be considered for future implementation,
but a new list of requirements and an
updated prioritization would be necessary.

For our project, we established the
requirements' prioritization through two
meetings with our client. The initial
meeting aimed to lay the groundwork for
the priority levels. After the meeting, our
team drafted a proposal for the
prioritization. In the subsequent meeting,
we reviewed this proposal with the client

and made minor adjustments based on the
feedback provided by Jisse. We then
finalized the prioritized list of
requirements, as presented below in the
form of a table, where each requirement is
indicated by its number.

Requirement number

Must
(have)

R1, R2, R4, R5, R7, R10, R15,
R16, R18, R19, R20, R21

Should R3, R6, R8, R11, R12, R13

Could

Will
not

R9, R14, R17

Table 1: MoSCoW prioritization table

First, the Will-not requirements are
addressed. We found R9 to be difficult to
complete as it is hard to automatically
measure timing of activities if they are not
done directly on PartnerOS. This is due to
the fact that activities such as online and
phone calls, sending emails and holding
online video conferences can be done on
countless platforms. Therefore, it would
require a considerable amount of work to
integrate so many possibilities into
PartnerOS. R17 has been marked as
Will-not for the same reasoning. A
different problem arises with R14, which
states that the system should extract ideal
partner profiles based on the success of
previous partners. We found that this
problem is very complex, as it involves
taking a large amount of characteristics
into account. It was decided that at this
stage, this requirement is not needed.

Moving onto the Should-have category,
which contains features that are important
but not crucial, we added R3 and R6 which

covers the ability for users to add extra
phases and tasks for the partner’s journey.
R8 addresses the issue of standardized
time estimates, which are not essential but
would make the process of collecting
analytics much easier. R11 and R12
address monitoring a partner's statistics
and displaying partner scores, which aid
the user in making informed decisions, but
are still not essential for the use of the
system. R13 was deemed not essential as it
involves allowing users to create custom
profiles to compare other partners,
however, the comparing partners feature is
not essential for the system to work.

It is also important to note that we have no
Could-have requirements. This is due to
the fact that we did not have enough time
to spend on features which would not
serve any greater purpose.

The rest of the requirements in the Must
category, are all essential to the system and
cannot be omitted.

3.4 Conclusion

In short, the thorough requirement
gathering process enabled us to identify
and prioritize essential features for the
PartnerOS platform. By engaging with the
client, we have devised a comprehensive
list of functional and non-functional
requirements. The MoSCoW prioritization
method further refined this list, ensuring
that the most crucial aspects of the system
are addressed. As a result, we have
established a solid foundation upon which
to design and develop a tailor-made
solution that meets the needs of our client
and target users.

4 Technology and Tool research

Embarking on such a substantial project
demands a more thorough understanding
of the most suitable existing technologies
and tools to ensure the achievement of
optimal effectiveness and efficacy. Using
the right resources from the beginning, can
pave the way for a successful and seamless
development project journey. In this
chapter, we delve into the vast
technological pool of tools, in order to
identify and evaluate the best options to
facilitate the attainment of the project’s
goals. By equipping our team with the
most fitting tools, we can transform
challenges into opportunities, therefore,
enhancing the overall project experience.

4.1 User Interface

The client Jisse provided the front-end
team with a brief sketch of the desired user
interface for PartnerOS, see appendix A.
This gave the team a great deal of creative
freedom, and the progress was presented to
the client weekly, discussing design
choices and coming to final decisions.
Utilizing the initial sketch and feedback
from the client, the team managed to
create an initial version of the platform. A
few weeks later, Jisse provided the team
with a more detailed design of the pages in
Figma, which greatly helped the team in
aligning the platform with the client's
preferences.

4.2 Back-end

The database is anticipated to be the
backbone of this project. In order to
develop the database effectively, it is
crucial to research and evaluate various
tools. This chapter will discuss the
possible tools, their benefits, and
drawbacks, as well as the rationale behind
the final back-end decisions.

4.2.1 Database Design
Two promising tools for database design
are: dbdiagram.io and Lucidchart.
Dbdiagram.io is a popular tool for
designing databases as it provides a
combination of SQL code for creating the
database and a database diagram. The
diagram allows for easy visualization and
verification of the correctness of the
database, with clear representations of
tables and their relationships. Additionally,
the tool updates the diagram and SQL code
in real-time, facilitating seamless
collaboration. Considering these features,
dbdiagram.io is a strong candidate for our
project. On the other hand, Lucidchart is
an option that offers drag-and-drop
functionality and collaboration features.
However, it lacks the real-time SQL code
generation feature found in dbdiagram.io.
Although Lucidchart is a powerful
diagramming tool, the absence of this
feature may hinder the efficiency of our
back-end development process.

4.2.2 Database Deployment and API
Provision
When tackling the issue of database
deployment and API provisioning, two
considered tools were Supabase and
Firebase. Supabase is a free and
open-source alternative to Firebase that
handles database deployment and provides
API endpoints for the front-end. The
platform eliminates the need for
programming a server, which can save
valuable time and resources. Furthermore,
a basic version of the project using
Supabase has already been initiated, with
some rudimentary requests functioning.
This makes Supabase an attractive option
for our database deployment. Moving onto
the second option, Firebase, a well-known
Google product, offers a comprehensive
suite of features, including real-time
database management, authentication, and
cloud functions. While Firebase is a
powerful and widely-used platform, its
proprietary nature and potential cost
implications may not align with our
project's goals. Another option that was
considered is building our own server and
database. This custom backend would
offer increased versatility. However, due to
the significant investment of time and
effort required, and the short timeframe for
the project, we decided that using a
third-party backend service would be the
most efficient option. Building our own
server would require us to handle tasks
such as maintenance, security, and
scalability, which could distract us from
our core goal of delivering a high-quality
product which satisfies the requirements as
stated in the requirements section. By
using a third-party service, we could focus
on developing the frontend and other
important features while leaving the

backend infrastructure to experts in the
field.

After careful consideration of the
aforementioned tools, we propose using
dbdiagram.io for database design and
Supabase for deployment and API
provision. The real-time collaboration and
SQL code generation features of
dbdiagram.io will streamline our back-end
development process. Supabase's
open-source nature, coupled with the
initial progress already made using the
platform, make it an ideal choice for our
project.

4.3 Collaboration

In addition to the technology used for
developing the product, it is essential to
select tools that facilitate effective
collaboration among team members.
During our research, we focused on three
main categories: communication, task
management, and planning and
note-taking. In this section, we will discuss
the potential options for each category and
the rationale behind our choices.

4.3.1 Communication
For communication, we considered
platforms like Discord, WhatsApp, and
Slack. Discord and WhatsApp were
already familiar to most team members,
and their ease of use made them strong
contenders. Moreover, our client was also
comfortable using WhatsApp as the main
communication channel. Slack, on the
other hand, is a popular tool designed
specifically for team collaboration.
Although Slack offers integrations and a
rich feature set, the familiarity and

simplicity of Discord and WhatsApp
outweighed the additional capabilities.

4.3.2 Task management
When it comes to task management, tools
like Trello, Asana, and ClickUp were
explored. Trello is a widely-used tool that
allows for easy organization and
visualization of tasks. With its labeling and
progress tracking features, Trello enables
effective task management for both front-
and back-end teams. Asana and ClickUp,
while offering more advanced features,
may have a steeper learning curve and
might not align with our project
requirements. Thus, Trello emerged as the
preferred option for keeping track of tasks.

4.3.3 Planning and note-taking
Lastly, for planning and note-taking, we
assessed various options, including Google
Drive, Microsoft OneDrive, and Notion.
Google Drive, with its integrated suite of
tools like Google Docs and Google Slides,
allows for real-time collaboration and
efficient sharing of documents and

meeting notes. The familiarity of Google
Drive among team members made it a
convenient choice. Microsoft OneDrive,
while offering similar features, might not
provide the same level of seamless
collaboration. Notion, though versatile,
could be more complex than necessary for
our project's scope. Therefore, Google
Drive was deemed the most suitable
choice for planning and note-taking.

4.4 Conclusion

In conclusion, this chapter explored
various tools and technologies to find the
best options for our project. We decided on
dbdiagram.io for database design and
Supabase for deployment and API
provision. For collaboration, we chose
WhatsApp for communication, Trello for
task management, and Google Drive for
planning and note-taking. These choices
aim to enhance our team's efficiency and
collaboration, ultimately leading to a
successful and well-executed project.

5 Internal project management

Utilizing the latest technologies and tools
tailored to the project requirements is
crucial for any software project. However,
the real driving force behind a project's
successful development lies in a
well-crafted team strategy. In this chapter,
we delve into the intricacies of our project
management strategies, highlighting the
significance of team roles and dynamics,
as well as the integration of appropriate
tools. From effective communication
channels to setting realistic internal
deadlines and managing potential risks, we
emphasize the importance of harmonizing
our team's efforts, ultimately ensuring a
seamless transformation from concept to
completion.

5.1 Team Strategy

In the initial development phase, our team
adopted the SCRUM methodology, a
popular Agile framework known for its
flexibility and adaptability. Given that our
client consistently introduced changes and
refinements to the system's design, this
approach allowed us to remain responsive
throughout the fluctuating project
requirements. In our project specifically,
we opted for one-week Sprints to ensure a
fast feedback loop and facilitate
continuous improvement.

Each Sprint began with a client SCRUM
meeting, where we identified the tasks
requiring completion as a team.
Throughout the Sprint, we held biweekly
stand-up meetings to discuss progress,
address any encountered roadblocks, and

share information with all team members.
Given that each member had a distinct area
of focus, the stand-up meetings were
essential to ensure the delivery of a
high-quality product.

To foster a sense of shared responsibility
within the team, we implemented a
strategy of rotating the Scrum Master role
among team members. This approach
ensured that everyone had the opportunity
to serve as Scrum Master at least once.
Moreover, by switching the role around,
the team benefited from diverse
perspectives, leading to a more inclusive
and well-rounded decision-making
process.

5.2 Team organization and roles

Our team’s organization and roles were
structured to ensure an effective division
of labor, with the work being split into two
main areas: Front-end and Back-end
development.

5.2.1 Front-end team
The Front-end team consisted of Jelle,
Cristi and Maouheb. The team worked
collaboratively, with tasks dynamically
assigned based on the project's
requirements, as well as individual
strengths. This flexible approach makes
sure that the team adapts quickly to
changes, which was established to be a
team requirement in Section 5.1.

5.2.2 Back-end team
Andre and Marc focused on the database
aspect of the project. Andre primarily dealt
with developing database functions for a
more seamless integration with API calls,
while Marc worked on designing and
structuring the database to ensure utmost
efficiency in data storage and retrieval.

This team organization and roles
distribution facilitated a smooth
development process, enabling each team
member to contribute their expertise and
effectively collaborate to achieve the
project's goals.

5.3 Risk management

Risk management played a crucial role in
our project's success. To address risks, we
have implemented a systematic process to
identify, assess and manage potential risks
throughout the project's lifecycle. This
section will discuss key risks encountered
and the strategies adopted to address them.

5.3.1 Risk management process
The risk management process consists of
four simple steps:

1. Identify risks
2. Assess risks
3. Plan response and mitigation
4. Monitor and review

The first step of identifying the risks was
done through having regular brainstorming
sessions where each team member, and our
client Jisse, have the chance to speak up on
any risks they might think of. This way we
ensure that as a team we can anticipate and
prepare for a wide range of issues.

Next, after a team member speaks up
about a certain risk, we collectively assess
the likelihood and potential project impact
the risk might have. This process allows
the team to prioritize risks and allocate
time resources suitably.

For each identified risk, we then developed
ways of minimizing its likelihood, but we
also crafted response plans in case the risk
actually occurs.

Lastly, we make sure to continuously
monitor and report each one of these risks,
as well as the mitigation strategies.

5.3.2 Key risks and mitigation
strategies
Throughout the development phase of the
project we encountered 4 big risks. In this
section each one of these risks is stated,
explained and a mitigation strategy is
included:

Misalignment of expectations: Being
Technical Computer Science students
collaborating with an external client from
the business domain, we recognized the
risk of potential misunderstandings or
misaligned expectations. To tackle this
challenge, we ensured open and consistent
communication with the client, organized
regular progress meetings, as mentioned in
Section 5.1. Therefore, we supplied our
client with comprehensive documentation,
thus maintaining alignment on project
goals, requirements, and deliverables.

Skill gaps: Our team members possessed
diverse technical backgrounds, which
might have resulted in gaps in knowledge
or expertise. To counteract this risk, we
split the work according to preference and

heavily promoted knowledge sharing
within the team. This in turn created
opportunities for team members to learn
from each other. Furthermore, we
consulted our supervisor and client when
necessary for additional guidance.

Scope creep: Considering the nature of our
project, we were vulnerable to scope
creep, since new requirements or features
frequently arose during development. To
address this risk, we employed the Agile
SCRUM methodology, as mentioned in
Section 5.1. This method enabled us to
prioritize tasks effectively and maintain
flexibility, while still adhering to the
project timeline.

Team member availability: As university
students, we understood that our team
members might face availability
constraints due to other academic
commitments or even personal
circumstances. To alleviate this risk, we
set up transparent communication
channels, as mentioned in Section 4.3 and
established clear expectations regarding

work hours, project tasks, and deadlines,
which allowed us to manage our time and
resources efficiently.

5.4 Conclusion

All in all, this chapter discussed the
importance of effective project
management strategies for the success of
our software project. By adopting the
SCRUM methodology, organizing our
team into specialized roles, and
implementing a systematic risk
management process, we aimed to ensure a
smooth development process and deliver a
high-quality product. The focus on
communication, flexibility, and
collaboration helped us to adapt to changes
and achieve our project goals.

6 System architecture

In this chapter, a comprehensive overview
of the system architecture of the project is
provided. The following sections will
firstly explore the global design, focusing
on how the different components of the
system interact with each other.
Afterwards, we will dive into the specifics
regarding the user interface design,
highlighting its essential aspects and how
it caters to the user experience.
Subsequently, we will discuss the
back-end design, examining its
considerable role in supporting all system
functionalities. Lastly, we will address the
integration design, outlining techniques
and strategies employed to seamlessly
combine front-end and back-end
components. By the end of this chapter,
readers will have a clear understanding of
the overall structure and organization of
our system, as well as the rationale behind
our design choices.

6.1 Global design

6.1.1 Overview
PartnerOS is a partner relationship
management system designed to help
businesses manage their partner networks,
distribute their products, and monitor their
sales activities (R1-R17). The system is
built on a client-server architecture and
uses web technologies to provide a modern
and user-friendly interface (R20). To get a
general overview of what different entities
want from the partnerOS system we have
made a Business Diagram, figure D.3.

6.1.2 High-level System
Architecture
PartnerOS is a web-based system that uses
a client-server architecture, implementing
requirements R1-R17. The client-side of
the system is a single-page application
(SPA) built using Vue, which
communicates with the server-side of the
system through a RESTful API. The
server-side of the system is built using
Vue.js, and it interacts with a PostgreSQL
database to store and retrieve data.

PartnerOS uses Supabase, which is a
cloud-based open-source database as a
service, to store and retrieve data. This
design choice supports the system's ability
to handle an increasing number of users
and partners without compromising
performance (R18).

6.1.3 Objectives
The objectives as described by Figure D.2
in Appendix D are as follows:

- Efficiently manage and store data
associated with partners, end customers,
and their attributes.
- Facilitate collaboration between team
members through task management and
assignment
- Support decision-making and reporting
through a well-organized and easily
accessible data structure

6.1.4 Key Components
PostgreSQL Database: The core of the
system, containing all relevant data
structures and relationships.

User Interface (UI): The front-end
interface allows users to interact with the
system.

Back-end: The server-side logic that
handles user requests, processes data, and
communicates with the database.

Integration: The connections and
interactions between different components
of the system, ensuring seamless
functionality.

6.2 User interface design

6.2.1 Overview
PartnerOS features a modern and
user-friendly interface that provides easy
access to essential features and functions,
fulfilling the usability requirement R20.
Screenshots of the user interface are
included in Appendix C and are references
throughout this section. Users navigate on
the screen by selecting pages on the
Navigation Panel. The whole screen is
showcased in Figure C.1, while the
Navigation Panel is highlighted in Figure
C.2. The Navigation Panel also contains a
Settings dropdown. On this page users can
do additional actions, which will be
mentioned later. A screenshot of the
Settings dropdown is shown in Figure C.3.

6.2.2 Design Principles and
Objectives
Simplicity: The interface is designed to be
simple and intuitive, with a clean and
modern design.

Consistency: The interface maintains
consistency across all pages and features,
providing a familiar experience for users.

Accessibility: The interface is designed to
be accessible to all users, including those
with disabilities.

6.2.3 Key Features and Functions

Logging In: The system allows users to log
in with the correct credentials. The login
screen is shown in Figure C.4 in Appendix
C.

Kanban Boards: The system implements
kanban boards for each partner type and
phase of the partner (R1), allowing users
to manage and track the progress of
partners. These boards can be seen in
Figure C.5. Users interact with the board
by dragging and dropping the partner tiles
across the board. A board can also be
edited using the Edit Board functionality,
shown in Figure C.6. This feature is
present in the Settings Dropdown.

Task Management: The system defines
standard tasks for each phase of the partner
journey (R4) and allows for customization
of tasks for individual partners (R5) and
addition of extra tasks as needed (R6). A
screenshot of this functionality is shown in
Figure C.7.

Partner Management: The system creates
partner pages (R10), tracks partner
statistics (R11), and monitors the current
phase of the partner journey (R12). The
partner page is shown in Figure C.8. This
figure displays 3 separate components:
Company Characteristics, Ideal Partner
Score and the Give vs Get component. Our
system also has a Partners page where a
whole overview of all partners can be
seen. This is highlighted in Figure C.9.

Time and Effort Tracking: The system
measures time and working hours for each
phase of the partner journey (R7) and
implements standardized time estimates
(R8). These time estimates are shown on
Give vs Get cards from the Partner page. A
screenshot of the Give vs Get element in
detail is shown in Figure C.10.

Ideal Partner Profiles: The system enables
users to create custom ideal profiles (R13),
and quantify partner performance using a
scoring system (R15). Adding an ideal
partner profile is shown in Figure C.11.
The partner score component is
highlighted in Figure C.12.

Importing Partners: The system enables
users to upload CSV files containing
partners. This feature is shown in Figure
C.13.

6.3 Backend Design

6.3.1 Overview
The Back-end Design chapter focuses on
the server-side architecture and services
that power PartnerOS, ensuring efficient
data processing, storage, and retrieval as
described in Figure 1, Appendix D. It

highlights the use of Supabase and
database functions to create an extensible
and integrable system.

6.3.2 Key Components
Supabase Integration: PartnerOS
leverages Supabase, an open-source
alternative to Firebase, for real-time data
synchronization, user authentication, and
API management. Supabase simplifies the
back-end development by providing a set
of tools and services that work seamlessly
with the PostgreSQL database.

RESTful API: PartnerOS utilizes
Supabase's auto-generated API endpoints,
which provide a standardized interface for
the user interface and external systems to
interact with the back-end services and the
PostgreSQL database.

Database Functions: PartnerOS relies on
PostgreSQL database functions to
encapsulate complex business logic and
calculations, such as partner scoring, task
assignment, and ROI calculation. For
examples of how these functions are
implemented see Figures D.4-6 in the
appendix. By implementing these
functions in the database layer, PartnerOS
ensures optimal performance,
maintainability, and extensibility.

Event Triggers and Webhooks: PartnerOS
uses Supabase's event triggers and
webhooks to respond to changes in the
database and execute specific actions, such
as sending notifications or synchronizing
data with external systems. This approach
enables seamless integration with
third-party platforms and facilitates the
development of custom extensions.

Scalability and Performance: PartnerOS is
designed to handle a growing number of
users, partners, and end-customers. By
leveraging Supabase's scalable
infrastructure and optimizing the database
schema and functions, the system can
maintain high performance and reliability
even as the data volume increases.

Security and Authentication: PartnerOS
employs Supabase's built-in authentication
and role-based access control features to
ensure the security and privacy of user
data. By using secure tokens and API keys,
the system can restrict access to specific
resources and functions based on user
roles and permissions.

6.4 Integration design

6.4.1 Overview
In Section 3.3, R17 is marked as Will not
in the MoSCoW prioritization table,
showcased in Table 1. The following
chapter presents the Integration design of
PartnerOS, had we committed to
implementing R17. Therefore the chapter
specifically focuses on the specific
techniques and approaches employed by
PartnerOS to facilitate seamless
communication between the PRM
software and external systems, such as
HubSpot. This chapter will detail the
integration mechanisms that make it easier
for users to connect PartnerOS with their
existing tools and platforms, as well as
discuss the support for CSV imports for
partner data.

6.4.2 Authentication and
Authorization
PartnerOS uses OAuth 2.0 to provide
secure and streamlined authentication and
authorization for third-party integrations,
including HubSpot. (R17) Furthermore,
Role-Based Access Control (RBAC) is
employed to manage permissions for
API-based integrations, allowing users to
define roles and assign them to individual
API keys for fine-tuned access control.

6.4.3 Data Mapping and
Transformation
PartnerOS offers a flexible data mapping
system that enables users to define how
data from external systems should be
mapped to internal data structures,
ensuring seamless data exchange and
synchronization. The built-in data
transformation engine allows users to
manipulate and convert data formats as
needed during the integration process,
maintaining data compatibility between
different systems.

6.4.4 Integration Templates and
CSV Imports
Integration templates simplify the process
of connecting PartnerOS with popular
third-party services like HubSpot, allowing
users to quickly establish connections with
their existing tools. Additionally,
PartnerOS supports importing partner data
using CSV files, streamlining the process
of onboarding new partners or migrating
data from other systems.

6.4.5 Monitoring and Maintenance
PartnerOS offers built-in monitoring tools
that allow users to track the performance
and health of their integrations in
real-time. These tools provide insights and
alerts, enabling users to identify and
address potential issues promptly. Regular
updates, patches, and improvements are
provided for SDKs, libraries, and

templates to ensure that integrations
remain stable and secure. Users also have
access to support resources and
troubleshooting guides to help maintain
and optimize their integrations with
HubSpot and other systems over time.

7 Development process

In this chapter, we delve into the
development process of the PartnerOS
project, offering a comprehensive insight
into the various stages and critical
decisions that shaped the final product. We
begin by discussing the key design
decisions made by the team, highlighting
their implications and potential
alternatives. Next, we provide a weekly
activity breakdown, illustrating the
progression of the project and the
contributions of each team member. The
objective of this chapter is to present a
transparent view of our project's journey,
elucidating how the team reached crucial
decisions and the specific roles and
contributions of each individual.

7.1 Key design decisions

In this section, we will explore the pivotal
design decisions that played a crucial role
in the development of PartnerOS. We will
outline the rationale behind these choices,
discuss their implications, and consider
potential alternatives. The design decisions
will be categorized into three main areas:
prototyping, database and backend, and
front-end. By examining these decisions,
we aim to provide a clear understanding of
the thought process and the factors that
influenced our team's approach to the
project.

7.1.1 Prototyping design decisions
For the database design and prototyping
we used dbdiagram.io a tool where we
could visually design our tables and
connect them. Afterwards we could

directly import this structure into our
database provider of choice.

For the UI design our client made some
designs in Figma. However, the client
started changing and adding Figma designs
half way through the project. So, ofcourse,
we were not able to change the design
every time. We talked about this with the
client and could conclude that changing up
the UI may seem easy for someone that
does not have any experience
implementing a UI. We showed him how
much time it would take to change up the
UI again and we concluded that it was not
worth the time.

7.1.2 Database design decisions
For the database, we needed to make some
major decisions before starting. First of all,
we needed to determine the type of
database that would fit our needs.
Furthermore, we needed to choose how we
would access the data in the database and
how it would be connected to the frontend.
These decisions all influenced the hosting
platform of the database. Initially, the
project used Supabase for the backend, but
there was quite a bit of discussion on
whether we should keep using it or switch
to something else. This is why we looked
at different parts of the backend.

For the type of database, we decided to use
a relational database. We made this
decision for a plethora of reasons. Firstly, a
relational database is designed for
scalability, which is important for this
project according to R18. Secondly, the

data in the database is divided into
multiple tables that are connected through
the use of primary and foreign keys. This
allows for great customizability, which
was also needed based on requirements
R2, R3, and R5. Lastly, relational
databases are very flexible in querying and
analyzing data. With SQL, we can easily
retrieve data based on specific criteria,
perform complex joins across tables, and
aggregate data to generate reports and
statistics. This was important based on the
project's requirements R9 and R11, which
call for advanced reporting capabilities,
such as calculating partner scores and the
time spent based on standard times for a
task. Overall, the decision to use a
relational database was based on several
factors, including scalability,
customizability, and flexibility.

Furthermore, we have chosen to use stored
procedures to access the data. This was a
controversial decision in our group
because Jelle had already started with an
initial proof of concept using Supabase
and its functionality to query the data. His
main argument was that it was easier and
faster to implement. However, others
argued that using stored procedures was a
better course of action. Arguments for
using stored procedures were that they
were faster and that storing precompiled
SQL on the server is more efficient and
can reduce network traffic. Besides this,
using stored procedures also improved
reusability. This last point has proven to be
very beneficial as we ran into more and
more issues with using Supabase as a
backend host. Therefore, if this project is
continued, it would be smart to convert the
backend to be self-hosted, and the use of
stored procedures aids in an easier
transition to this other backend.

The connection from the frontend to the
database is done through Supabase. This
was not a unanimous decision, however.
The other possible option that was
considered is building the backend
ourselves using a SQL database. This
option has a major advantage in terms of
customizability. However, it would also
cost more time because it would require us
to build an authentication system.
Concluding, for this project, Supabase was
more suited because of the time
constraints. However, if the given project
is continued, it would be recommended to
build a server.

After researching the best fit for the
different aspects of the database, we
concluded that the use of Supabase was the
right fit for this project. However, the
accessing of the data will be done in a
different manner compared to the initial
proof of concept done by Jelle. In the end,
we have decided to use stored procedures
for the data access, mainly because of their
efficiency and reusability.

7.1.3 Front-end design decisions
PartnerOS has chosen to implement its
frontend using VueJS, which is a popular
JavaScript framework for building user
interfaces. The decision to use VueJS was
based on its ability to bind data easily
between the template modules and scripts,
thus enabling interaction with different
components allowing for a seamless
re-render of the interface upon receiving
new data. This has helped PartnerOS to
create a highly responsive and dynamic
user interface that enhances the overall
user experience.

In addition, VueJS has provided support
for the Quasar framework, which has
proven to be a valuable asset for the
development team. Quasar is a material
design component library that provides
developers with pre-built components,
such as forms, buttons, and sliders, that are
customizable and easy to use. This has
significantly reduced the time and effort
required to build custom components from
scratch, freeing up valuable time that can
be allocated to more important aspects of
the project.

Moreover, Quasar has also contributed to
the aesthetic interface of the application by
providing good looking components that
can be customized to fit the specific design
of the project.

After conducting thorough research and
practical experimentation, the front-end
team reconsidered their initial plan of
using Tailwind in combination with
Quasar. The team discovered that Quasar
already provided most of the functionality
that Tailwind offered and using both
resulted in several conflicts. As a result,
the team decided to abandon the use of
Tailwind altogether.

The front-end team faced a challenging
decision during the project's development:
switching from JavaScript to TypeScript,
several weeks after starting the project. As
the codebase grew rapidly, JavaScript
became increasingly messy and complex,
resulting in hard-to-read and
hard-to-debug code. Although the team
initially chose JavaScript due to familiarity
with the language, it proved to be a bad
decision since object creation and type
annotations were difficult to manage in
JavaScript. The conversion to TypeScript,

which took a few days and caused some
file breakage, was successful. The team
believes this was the correct decision and
would be beneficial if the project
continued professionally in the future.

Overall, the combination of VueJS and
Quasar has proven to be an effective and
efficient solution for the frontend
development of PartnerOS. It has enabled
the team to build a user-friendly and
visually appealing interface that is both
easy to use and functional.

7.2 Weekly activity

As outlined in Section 5.1 of this report,
our team has implemented the Scrum
methodology. With our one-week sprints
and regular SCRUM meetings, tracking
the progress of each team member's tasks
has been a straightforward process. In
order to enhance readability and provide a
detailed account of our progress, we have
included Table B.1 in Appendix B. This
table presents all the Sprints, the
corresponding SCRUM Master, as well as
the time period for each sprint.

Additionally, we have maintained a
thorough record of each member's
responsibilities per sprint in Table B.2,
also located in Appendix B. Keeping track
of individual tasks and contributions is
crucial for the development process, as it
allows us to monitor progress, identify
potential bottlenecks, and ensure that each
team member is accountable for their
work. By meticulously documenting our
team's efforts, we have fostered a
collaborative environment that promotes
transparency, efficiency, and ultimately,
the successful completion of our project.

During the initial stages, Sprint 1 and 2,
our team began slowly by setting up tools
and implementing the primary functions
for the database. In the front-end, initial
pages were created but were not yet
connected to the database. The connection
between the front-end and back-end had
not been established at this point. As we
progressed into Sprint 2 and 3, the
front-end and back-end were integrated,
and additional requirements, such as the
give vs get card and partner score display,
were added. Improvements in navigation
and routing on the website were also made
during this period.

Sprint 4 and 5 focused more on refining
the current implementation and fixing
bugs. In these sprints, the team dedicated
their efforts to optimizing the system and
ensuring that all features were functioning
as intended. Finally, Sprint 6 and 7 were
dedicated to further bug fixing and
preparing the product for deployment to
the customer. The team worked diligently

to ensure that the final product was
polished and ready for use, meeting the
high standards we had set for ourselves
throughout the development process.

7.3 Conclusion

To sum up, this chapter provided an
in-depth look into the development process
of PartnerOS, discussing the critical design
decisions encountered by the team, their
implications and alternatives. The team's
adoption of VueJS, Quasar, and a
relational database proved to be effective
choices that contributed to the success of
the project. Furthermore, the transparency
and accountability fostered through our
SCRUM methodology, along with the
detailed records of tasks and progress,
facilitated a well-organized and efficient
development process.

8 Testing

Testing is a critical component of software
development. It plays a key role in
ensuring that the end product meets the
requirements and expectations of our
client. In the following section, we will
discuss the testing plan and results for this
project. For the testing plan we rely on
meetings with our client, manual testing
and user-testing. The goal of this plan is
for the client to be involved in the
development process. This ensured that the
client and team were on the same pages
regarding the requirements and
miscommunications can be resolved early
on. The results of the testing are then
reviewed, and the issues that arose were
addressed. Overall the testing helped
improve our software, and identify issues
with the project.

8.1 Testing plan

The testing plan for this project will be a
combination of meetings with the client,
manual testing, and user-testing to ensure
the final product meets the requirements
and provides a satisfactory user
experience. The agile nature of this project
means that the requirements may change
during development, but we will start by
establishing the general requirements as
outlined in Section 3.2. After creating the
initial design, we will consult with our
client and incorporate their feedback.

Upon implementing the features, we will
begin functionality testing to ensure all
interactive elements, such as buttons and
forms, are working correctly. We will also

test all links and the login function.
Compatibility testing will be conducted to
ensure the website functions well on
different screen aspect ratios, although
mobile compatibility is not a requirement
for this project.

Following the manual testing phase, we
will invite volunteers to participate in
usability testing. This will help identify
any errors or inconsistencies that may be
difficult to detect when working closely
with the product. By engaging external
individuals, we aim to gain fresh
perspectives and benefit from their
unbiased feedback.

Lastly, we will present the product to the
client for further testing. The client has
agreed to conduct their own tests, and any
issues found will be addressed by our
team. This process will be completed in
multiple increments to ensure a final
product with as few flaws as possible.

This testing plan primarily relies on our
testing efforts and the client's input. Our
testing will ensure that the product is free
of major flaws and functions broadly,
while the client's testing will confirm that
all requirements are met and potentially
refine minor issues. Please refer to
Appendix E, Table E.1 for a detailed list of
test use cases.

8.2 Testing results

In the following section the results of the
testing will be explained. We will start
with the functionality testing results,
continue with usability testing and end
with the testing conducted by our client.

Functionality testing resulted in numerous
errors, however these errors were overall
minor and could be resolved relatively
quickly. These tests made some errors in
the backend evident, which were then
resolved by the backend team. Besides this
it also found multiple faults in the frontend
which then were fixed as well. No bugs
were found which could not be resolved
relatively quickly.

The usability tests conducted by asking
volunteers to use the product resulted in
some great feedback. The test-subjects
commented on some consistency issues
between the different colors and buttons.
These consistency issues were simple to
solve. One of the volunteers also tried to
enter malicious inputs. SQL injection was
tried, however because of the stored
procedures this did not pose a risk.
Furthermore he entered the number of
people working for a company to be less
than 0, this ofcourse should not be
possible. However in the briefing by our
client he stated that the product will only
be used by trained individuals, therefore it
is not a big issue that someone can enter
negative numbers for attributes. This issue
would also be relatively hard to resolve
because some company attributes could
contain negative numbers. So to fix the
problem the database would need to be
changed, and the frontend would need the
functionality to specify if an attribute can

be negative. Therefore it was chosen to
mention the issue in this report but not
resolve it. This can be done when the
project is continued on a later date.

Client testing has provided us with a lot of
feedback throughout the project, including
bug reports as well as an opportunity for
Jisse to validate the requirements and
clarify them if needed. We were able to
successfully address all issues reported by
the client, which included some significant
changes such as adding a co-sales pipeline
board for end-customers, ensuring that
partner journeys always consist of the
same boards regardless of partner type,
and making sure that standard tasks and
sections differ depending on partner type
and board.

Overall the testing has provided us with a
large quantity of usable feedback. We have
tried to mend all the problems that came to
light during the testing phase. Most bugs
are fixed successfully, but some bigger
shortcomings of our project are not
feasible to fix in the scope of this project
and will have to be attended to at a later
date.

8.3 Conclusion

To conclude, our testing plan, which
included functionality testing, usability
testing, and client testing, played a crucial
role in ensuring the quality of the
PartnerOS project. By addressing bugs and
incorporating valuable feedback, we have
significantly improved the product and
ensured it meets client requirements.
Although some limitations remain, our
comprehensive testing approach has

contributed to delivering a robust and
reliable software solution.

9 The final product

Presenting PartnerOS, the advanced
partner management system tailored for
SaaS companies. PartnerOS enables
businesses to efficiently streamline their
partner management processes, effectively
monitor partner performance, and
effortlessly recruit new partners. The
system is designed to enhance human
capabilities, empowering employees to
focus on the less repetitive and more
impactful aspects of their jobs. Through its
real-time analytics and reporting
capabilities, PartnerOS equips businesses
with the essential insights required for
making data-driven decisions regarding
their partner network.

9.1 Final features

An important feature of our product was
that it would be very customizable. This
added a lot of difficulty in the design and
implementation. In the following section
we will describe the features in the final
product. These descriptions will be done in
the I-form.

First of all, with the press of a button, I
will get a fresh copy of the template
database for my new instance of the
product. This makes the product very
scalable.

I am able to log into the web-app with my
own email and password (Figure C.1).
Since it is my first time logging into the
product I can set my avatar and add other
users as necessary. Since I already have all
my existing partners in Excel I can import

them into the product as a CSV (Figure
C.2). All partner attributes will be
automatically added to the database even if
the column does not exist, for example the
field of the amount of end-customer a
partner has. Also, any partner type present
in the CSV file will be imported into the
product.

Now I am able to create an Ideal Partner
Profile (IPP) based on the attributes
imported (for example amount of
end-customers) and connect an ideal value
and a weight to it (Figure C.3). The value
and weight for each attribute will
determine the final ideal partner score.
This of course can be done for each
partner type. Also, I can view all the
partners in the partner overview with their
score and sort them based on the IPP score
(Figure C.4).

There are 3 journeys (boards) for each
partner type and partner phase: Recruit,
Onboard and Retain (Figure C.5). Each
journey (board) can be fully customized
within the product (Figure C.6). With
different sections and tasks. Each task has
a custom task type, for example an online
meeting or going out for a coffee. Each
task has a different standardized time of
completion. Now, I, as a partner manager
can complete a task for a section in the
board and add a comment to it for that
particular partner. I can also add a private
task only for that particular partner (Figure
C.7).

I can add a custom partner and add it to the
Recruit phase for that partner type. There I

complete section tasks and drag and drop
him through the sections (Figure C.5).
Time is measured on how long a partner is
in a section. This can be used to see the
average time to recruit a partner and the
time for a particular partner.

To extract partner Return On Investment
(ROI) we need a way to find a way to
measure the Return part. Here the
end-customer comes in. On the Co-sales
board I can add end-customers, add a deal
value to them and connect them to a
partner that manages them. Here I can
again drag and drop them across the
sections (Figure C.8). Here the difference
is that there is a won and a lost section in
the end to indicate a lost or won
end-customer.

On the partner profile I can now see the
give vs get. The man hour spent on a
partner (give) versus the total
end-customers provided, the won-lost rate
and the total value provided by a partner
(Figure C.9). Together with the Ideal
Partner Score and how it was composed
(Figure C.10). These things are the most
important things of our product for the
client.

9.2 Excluded features

Unfortunately we were not able to
implement all requirements. This was
expected due to the complicated nature of
this project and the changing requirements.
Because of proper prioritization in this
project we have managed to implement all
crucial requirements.

One of the requirements that we did not
manage to implement is the integration

with the Hubspot API according to R17.
This requirement was relatively important
to our client, but it was outside of the
scope of this project to implement. This
integration is quite complex and we could
not integrate HubSpot until we had the
MVP of partnerOS working. We are
content with the decision of making R17 a
won’t have on the MoSCoW scale.
Making this decision early on enabled us
to communicate with our client clearly and
not disappoint him at the end.

The extracting of ideal partner scores
based on the existing partners is another
requirement that is not fulfilled in the
current project. According to R14 we
should automatically calculate an ideal
partner profile based on a list of partners
with their give vs get scores. For the client
this feature was nice to have, but it was not
critical. Therefore the project group has
decided together with the client to
prioritize this as a won’t have requirement.

Lastly, another requirement that is not
implemented is the automatic
measurement of the time spent on a task.
This requirement would be very useful to
have, since it would allow for more
accurate give versus get information, and a
better ROI prediction. The problem is that
for this to be done, our project needs
integration with numerous different tools.
For example, if we want to measure the
time spent on writing an email,
integrations with gmail are needed, but
also with outlook and other mailing
services. This would require a lot of work,
and also for every different task the time
spent would be measured differently using
different tools. This would cascade when
new task types are added. Therefore we

have decided to rate this one as a won’t
have requirement.

9.3 Limitations

In the following section, we will outline
the parts of our project that are
implemented but need some extra attention
when the project is continued.

The main limitation of the current project
is that it is not as polished as we would
like it to be. This is due to the high number
of requirements that needed to be
implemented to even have an MVP. In the
end, we did not have enough time or
resources to make the product as perfect as
we wanted it to be. Some flaws that were
found during testing could not be resolved
in the current development cycle.

Another limitation is the manual labor
needed for duplicating the project for new
customers. We have partially fixed this
issue by writing a script that automatically
creates a duplicate supabase project with
the same database structure and methods.
However, this step still requires customers
to manually create an empty supabase
project first. One of the reasons why we
were not able to solve this limitation is
because of the decision to use supabase as
our backend host. On the contrary, a
custom backend would have enabled fully
automated duplication of the database for
new customers. But this option would have
required more development time. That is
why, given the limited time span of this
project, we chose to use supabase, which
brings with it the limitation of requiring
manual labor for new customers.

The last limitation is also caused by the
use of supabase. As mentioned earlier,
every client has their own supabase
project. However, the premium fee for
supabase is relatively high compared to
hosting a custom backend. This cost
results in a higher monthly fee for our
customers. To mitigate this limitation, the
same solution can be used as for the
previous limitation, which is switching
from supabase to a custom backend.

In conclusion, while our project was
successful according to us, our client, and
the requirements, it falls short of the level
of polish we were aiming for. Time
constraints and limited resources
prevented us from resolving all the flaws
found during testing. Additionally, while
we have partially addressed the issue of
manual labor needed for duplicating the
project for new customers with a script,
the requirement for customers to create an
empty supabase project manually remains.
The decision to use supabase as our
backend host also limits us in terms of
monthly costs for our customers. However,
we recognize that the choice of supabase
was necessary given the limited timeframe
of this project. To overcome these
limitations, it should be considered to
switch to a custom backend in future
development cycles, which would provide
more flexibility in terms of cost and
automation.

10 Reflection on the process

As the development team, we take pride in
the successful completion of the
development cycle and the resulting
product. However, this journey has not
been without its challenges and critical
decision-making. Upon reflecting on our
experiences, we recognize that there are
aspects of the design process we would
approach differently in future projects.
This chapter delves into the lessons
learned, the challenges faced, and the
potential improvements we have
identified, providing valuable insights for
the continuous evolution of our team and
the development process as a whole.

10.1 Requirement negotiations

During the initial meetings with our client,
multiple requirements were discussed,
with an emphasis on high levels of
customization and a few non-negotiable
aspects. This created difficulties during the
design and implementation phases.
Considering the time constraints and the
client's goal to create a Minimal Viable
Product, we should have negotiated more
regarding the complexity of the project
requirements. A reduction in
customizability would have enabled us to
allocate more time to other areas, such as
the product's aesthetics.

10.2 Backend scalability

One of the early dilemmas was choosing
between building our own server with
custom endpoints and authentication

system or utilizing Supabase API with
their pre-existing endpoints and database.
Ultimately, we went with Supabase, as it
saved us from having to develop
everything from scratch in the back-end. In
hindsight, we should have built our own
server due to our scaling design choice.
Our goal was to have a unique database for
each new client, as the entire database is
customizable. We wanted to be able to
scale this effortlessly, such as creating
replicas of existing database templates and
running them in separate docker
containers. Unfortunately, we realized this
too late, and it was too time-consuming to
switch to a custom-built server. If we plan
to continue this project in the future, we
will need our server to handle these
operations. Supabase is convenient, but it
also has limitations in terms of control.
While Supabase offers the ability to create
distinct projects through its API,
configuring the templates to match our
requirements is not feasible. On top of
that, using this approach becomes costly
since Supabase charges for each project
created. Therefore, utilizing Supabase for
our project would not be a viable option
due to the limitations and high expenses it
imposes.

10.3 Future improvements

In this section we will talk about the
enhancements that we recommend for
future development efforts, whether
undertaken by our team or other
developers. First and foremost, it is crucial

to implement a custom back-end and host
the database separately, as opposed to the
current setup. This change would improve
the overall performance and security of the
system.

Secondly, it is essential to strengthen the
input sanitation in the front-end. Although
the product is intended for use by trained
professionals, human error is inevitable.
Therefore, it is prudent to implement more
robust input validation mechanisms to
minimize the occurrence of input-related
errors.

Additionally, we recommend refining the
design and user experience of the board
and section editing pages. For example,
allowing users to rename section and task

names, as well as reordering sections,
would enhance the usability of the
platform.

Lastly, we suggest revisiting the
unimplemented requirements outlined in
Section 3.3 of this report. Integrating the
system with popular platforms like
Hubspot is one such requirement. Such an
integration could expand the user base and
attract more customers to the platform.

Addressing the above recommendations at
this point in time will significantly help
with the future development of extra
features. Thereby, improving the
functionality, usability and overall appeal
of PartnerOS in the future.

11 Appendix

Appendix A

Figure A.1 Initial sketch from our client Jisse

Appendix B

Sprint Number SCRUM Master Period

Sprint 0 Jelle 1/03/2023 - 07/03/2023

Sprint 1 André 7/03/2023 - 10/03/2023

Sprint 2 Maouheb 13/03/2023 - 17/03/2023

Sprint 3 Cristian 20/03/2023 - 24/03/2023

Sprint 4 Marc 27/03/2023 - 31/03/2023

Sprint 5 Jelle 03/04/2023 - 06/04/2023

Sprint 6 Andre 11/04/2023 - 14/04/2023

Sprint 7 Maouheb 17/04/2023 - 21/04/2023

Table B.1: Sprint periods and assigned Master

Sprint Nr Team
Member

Responsability

0 Jelle Design Ideal Partner Score with weights

André Take meeting notes and write SQL functions

Maouheb Setup project and implement tailwind in project

Cristian log-in and register page design

Marc Design the initial database

1 Jelle Report work, implement script to insert dummy data

André Impleget methods for journey, board, section, partner

Maouheb Match front-end design to prototypes

Cristian Implement drag-and-drop for partners between sections

Marc Import database schema into Supabase

2 Jelle Show partner data on front-end, continue drag-and-drop work

André Get partner data, implement method to move partner to section

Maouheb Improve front-end design, implement settings page

Cristian Implement partner score display

Marc Input methods for journey, board, section, partner

3 Jelle Implement adding a partner, getting task types

André Implement adding ideal partners and calculating partner scores

Maouheb Improve website layout, navigation, routing, settings and
authentication

Cristian Implement give-vs-get card

Marc Update board API calls, implement showing partners on board

4 Jelle Implement the Grow board

André Figure how to convert a board into JSON format

Maouheb Fix drag-and-drop bugs, improve boards generally.

Cristian Implement Partner task list

Marc Improve database and modify partner table

5 Jelle Create the UI and function that translate the csv data to json to send
it to the backend

André Make sql functions for import partners from csv, get next deadline
and previous contact times.

Maouheb Transform project from JS to TS along with creating models.
Implement settings page along with avatar upload and profile
creation upon signup.

Cristian Display next and last contact, fix layout of partner page and bugs

Marc Research how to create new instances for every partner and import
schema.

6 Jelle Adding a new instance of the database and a connected branch so
that our client can see the product any time and add his own data

André Removing add attribute and adding it to the creation of partners
and ideal partners, making sure the query accepts new attributes
and automatically creates them.

Maouheb Implement Give vs Get statistics. Improve scalability of the
components. Perform code reviews.

Cristian Implementing the Partner overview page. Fix API calls on front

Marc Create a python script that duplicates the database

7 Jelle Testing and fixing bugs emerged from the new database instance of
the product and bugs found in the feedback from Jisse

André Help fix bugs with the new database, and other bugs that emerged
with the client-testing, start writing reports.

Maouheb Deploy the website to the main.partneros.io and demo.partneros.io
domain with a demo version running on the demo branch and a
main version running from the master branch.

Cristian Improve layout and design of task list and partner overview

Marc Improve the script and also check how identical are the databases

Table B.2: Individual responsibilities per Sprint

Appendix C

Figure C.1: PartnerOS main screen

Figure C.2: Navigation Panel

Figure C.3: Settings Dropdown

Figure C.4: Login component

Figure C.5: Board overview component

Figure C.6: Edit board component

Figure C.7: Task list and adding a task component

Figure C.8: Partner Page

Figure C.9: Partner overview component

Figure C.10: Give versus Get component

Figure C.11: Add ideal partner component

Figure C.12: Ideal Partner Score component

Figure C.13: Upload CSV file component

Appendix D

Figure D.1: Final Database Diagram

Figure D.2: PartnerOS Sequence Diagram

Figure D.3: PartnerOS Business Diagram

Figure D.4: SQL function for calculating partner scores

Figure D.5: SQL function for adding auto assigned tasks

Figure D.6: SQL function for the get of a partner.

Appendix E

Test
#

Tested
functio
nality

Test
description

Test steps Expected result Pass/
fail

1 Login Verify that a
user can log
in with
valid
credentials.

- Enter a valid username and
password.
- Click the "Login" button.

The user is successfully
logged in and redirected to
the dashboard.

Pass

2 Invalid
Login

Verify that a
user cannot
log in with
invalid
credentials.

- Enter an invalid username
and/or password.
- Click the "Login" button.

An error message is
displayed, indicating that
the login attempt was
unsuccessful.

Pass

3 Add
Partner

Verify that a
user can
add a new
partner.

- Navigate to Partners, then
select + New Partner
- Fill in the required partner
details.
- Click the Submit button

Notification that a new
Partner was submitted is
shown. New Partner
should be visible in the
Partners page.

Pass

4 Add
Ideal
Partner

Verify that a
user can
add a new
ideal
partner.

- Navigate to Settings, then
select + New Ideal Partner
- Fill in the required Ideal
Partner details.
- Click the Submit button

Notification that a new
Ideal Partner was
submitted is shown. The
Partner Type should now
reflect in the respective
Partner’s score.

Pass

5 Add
Partner
Type

Verify that a
user can
add a new
partner
type.

- Navigate to Settings, then
select + New Partner Type
- Fill in the Partner Type
name
- Click the + button

Notification that a new
Ideal Partner Type was
submitted is shown. The
Partner Type should now
be visible in any Partner
Type selection forms.

Pass

6 Task
Creati
on

Verify that a
user can
create a
new task for
a partner.

- Navigate to a Partners Task
List by clicking on a
respective Partner on the
Board
- Click the Add Task button
- Fill in required details
- Click on the green plus
button

The input form for adding
a task disappears and the
task is visibly added on the
list

Pass

7 Edit
board

Verify that a
user can
edit a board.

- Navigate to Settings, then
select Edit a Board
- Choose the recruit Board
Type to be edited
- Add a new default task and
click the green plus button

The changes should be
reflected when navigating
to the Recruit Board

Pass

- Remove a section by
clicking the red icon

8 Task
Compl
etion

Verify that a
user can
mark a task
as
completed.

- Navigate to a Partners Task
List by clicking on a
respective Partner on the
Board
- Click on the yellow round
icon at the beginning of a
task

The round icon should now
become green. In the
Board the last activity on
the respective Partner’s
card should say “just now”

Pass

Table E.1: Test cases for PartnerOS

